STIMULATORY EFFECT OF PLATINUM (IV) ION ON THE PRODUCTION OF SUPEROXIDE RADICAL FROM XANTHINE OXIDASE AND MACROPHAGES

Yoshihiko Ōyanagui

Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, 2-Chome, Yodogawa-ku, Osaka 532, Japan

(Received 29 June 1976; accepted 1 October 1976)

Abstract—Superoxide radical (O_2) production was measured spectrophotometrically using NADH and lactate dehydrogenase (LDH) in a xanthine oxidase(XOD) plus hypoxanthine (HX) system and in an isolated guinea pig macrophages system. Sodium platinum (IV) chloride $(Na_2PtCl_6: 2.5 \times 10^{-4}-1 \times 10^{-3} \text{ M})$ enhanced the production of O_2 in both systems (2–10 times). The degree of the enhancement was dependent on incubation time, basal level of O_2 production and concentration of Na_2PtCl_6 . The stimulated O_2 production in the XOD system was inhibited by luminol (O-aminophtalhydrazide) and that in the macrophages was inhibited by an anti-inflammatory drug, Diclofenac sodium (Dc). These results show that platinum (IV) ion is either a potent stabilizer of O_2 or a stimulator of O_2 production as are paraquat or streptonigrin. This specific character of platinum (IV) ion may explain its bactericidal and inflammation-inducing properties.

Many metal ions such as Mn⁺², Hg⁺², Cu⁺², Fe⁺², Fe⁺³, Ni⁺², Co⁺² in concentrations of 10^{-6} – 10^{-3} M inhibit the production of superoxide radical (O_2^-) from isolated guinea-pig macrophages [1]. Other metal ions such as Ca⁺², Ba⁺², Cd⁺² and Pb⁺² inhibit 'O₂ production to a far less extent at a concentration of 10⁻³ M. Pt⁺⁴ (Na₂PtCl₆) even stimulates O_2^- production. O_2^- from granulocytes is known to be bactericidal [2, 3], and certain platinum compounds have been reported to inhibit cell division of gram-negative bacteria [4]. Excess production of $O_2^$ may be cause of inflammation. The prostaglandin phase of rat carrageenan foot oedema is completely inhibited by intravenous injections of superoxide dismutase (SOD: 0.5-2.0 mg/kg) which specifically breaks down 'O₂ [5]. Platinum complexes are also reported to induce human atopic hypersensitivity [6]. Many in vivo effects of the platinum compounds seem to be explained by the ability of Pt+4 ions to stimulate 'O₂ production.

MATERIALS AND METHODS

The absorbance at 340 nm of NADH (0.96 μ mole) was continuously recorded with a Shimazu Multipurpose MPS-5000 spectrophotometer at 37°. Superoxide dismutase (SOD: Sigma's product from bovine blood), which is known to react specifically with 'O₂, completely inhibited the NADH oxidation induced by 0.1 U/ml xanthine oxidase (XOD: from buttermilk) plus 80 µM hypoxanthine (HX) or by macrophage suspensions. Reaction mixtures in this experiment contained 5 µM lactate dehydrogenase (LDH: from rabbit muscle) and either 8 mM Veronal-acetate-HCl buffer pH 6.5 or 125 mM NaH2-Na2HPO4 buffer pH 6.5. In some experiments, 25 mM phosphate buffer was also used. Phosphate anion is essential for the production of 'O₂ from macrophages and the optimum pH for its production is 6.5. The details were reported in the preceding report [1]. The

method used in the present experiment to determine the amount of O_2^- is a modification of that of Chan et al. [7], who introduced the LDH and NADH method.

Small amounts of O_2^- were produced even in media containing no XOD or macrophages, and this production was influenced by various agents. Stimulatory effects of agents on O_2^- production were, therefore, calculated by the following formula:

Stimulation (%)

$$= \frac{\Delta A (agent + S) - \Delta A (agent only)}{\Delta A (S only) - \Delta A (medium only)}$$

where ΔA is the difference in absorption at 340 nm before and after the reaction, and S is the source of O_2^- i.e. XOD + HX or macrophage suspension. The pH of all the agents used was adjusted to 6.5 before addition. Diclofenac sodium (Dc,) and luminol solutions contained up to 0.1% of N_1N' -dimethylformamide (DMF) to effect solution: this amount had little effect on O_2^- production.

RESULTS

The degree of NADH oxidation was linear up to 10 min with 0.1 U/ml XOD plus $80 \,\mu\text{M}$ HX (Fig. 1). This oxidation was more than doubled by addition of Na₂PtCl₆ (5 × 10⁻⁴ M) and was nearly completely inhibited with SOD (14 U/ml = 4 μ g/ml). Without XOD, Na₂PtCl₆ had no stimulatory effect on basal 'O₂ production. At higher Na₂PtCl₆ concentrations, the interval of linear oxidation was shortened. Moreover, at 2.5×10^{-3} M the platinum became inhibitory at 5 min; a lower Na₂PtCl₆ concentration of 2.5×10^{-4} M required a time lag of at least 5 min to stimulate 'O₂ production.

The stimulation of NADH oxidation was not due to the stimulation of LDH activity by Na₂PtCl₆. The LDH activity was measured in terms of the decrease

474 Y. Ōyanagui

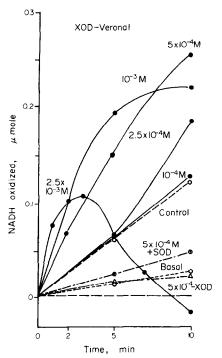


Fig. 1. Time-course of O_2^- production effected by 0.1 U/ml XOD plus 80 μ M HX in various concentrations of Na₂PtCl₆ in 8 mM Veronal-acetate-HCl buffer pH 6.5. The final concentration of SOD added was 14.0 U/ml (= 4 μ g protein/ml).

in NADH absorption at 340 nm in 30 sec incubation with 0.1 mM sodium pyruvate and $8 \times 10^{-3} \text{U/ml}$ LDH at 37° . Na₂PtCl₆(10^{-4} M- 10^{-3} M) never stimulated the LDH activities. In a concurrently conducted experiment, sodium oxamate (a specific LDH inhibi-

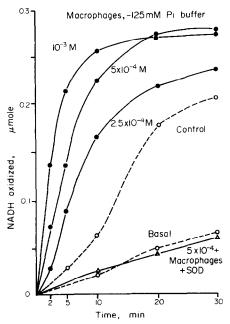


Fig. 2. Time-course of 'O₂' production effected by 2.6 × 10⁶ macrophages/ml in various concentrations of Na₂PtCl₆ in 125 mM NaH₂-Na₂HPO₄ buffer pH 6.5. The final concentration of SOD added was 14.0 U/ml.

tor) inhibited the LDH activity by 94 per cent at a concentration of 10⁻³ M and 74 percent at 10⁻⁴ M.

The O_2^- production by the isolated guinea-pig macrophages was also stimulated by Na₂PtCl₆ (Fig. 2). These findings suggest that the platinum salt stabilizes O_2^- or facilitates O_2^- production. The platinum salt may activate the XOD system or enzyme(s) that

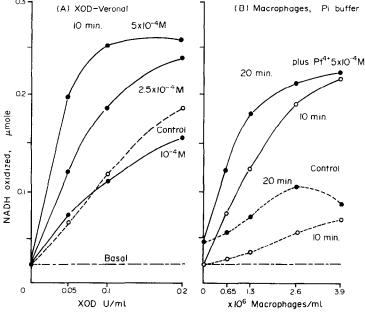


Fig. 3. Stimulation of 'O₂' production by Na₂PtCl₆ in different 'O₂' producing conditions. Reaction mixture contains buffer solutions, LDH, macrophage suspension or XOD + HX and Pt⁺⁴(---) or no Pt⁺⁴(---) solutions. Reaction was started by the addition of NADH and incubated for 10 or 20 min. (A) 0.1 U/ml XOD + 80 μM HX in 8 mM Veronal-acetate-HCl buffer pH 6.5. (B) Macrophages in 125 mM NaH₂-Na₂HPO₄ buffer pH 6.5.

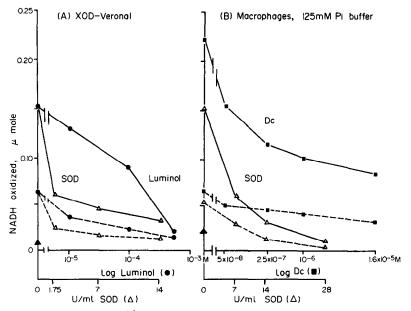


Fig. 4. Inhibition of control and Pt⁺⁴-stimulated O₂ productions by SOD (△), luminol (●) and Diclofenac sodium (Dc:■). Control (——) and with 5 × 10⁻⁴ M Na₂PtCl₆ (—). (A) 0.1 U/ml XOD + 80 µM HX in 8 mM Veronal-acetate-HCl buffer pH 6.5 was incubated for 5 min. (B) 1.8 × 10⁶ macrophages/ml for SOD test or 2.6 × 10⁶ macrophages/ml for Dc test in 125 mM NaH₂-Na₂HPO₄ buffer pH 6.5 was incubated for 10 min. (▲) NADH oxidation by 5 × 10⁻⁴ M Na₂PtCl₆ without XOD + HX or macrophages.

produce O_2^- in macrophages, but the exact mechanism of enhanced O_2^- production by Pt^{+4} is not clear. Fig. 3 shows the differences in O_2^- stimulation under various O_2^- producing conditions. In both the XOD and macrophage systems, the stimulation by Na_2PtCl_6 is greater in conditions where small amounts of O_2^- are being produced. Factors that govern the stimulatory effect comprise incubation time, concentration of Na_2PtCl_6 and the amount of O_2^- production. Phosphate anion concentration is important in the case of macrophages [1].

Fig. 4 shows that the stimulation of NADH oxidation by Na₂PtCl₆ is due to 'O₂ production and not to other oxidants, because SOD inhibited the Pt⁺⁴-stimulated NADH oxidation. The inhibition was dose-dependent just as in the control NADH oxidation by the XOD system and by the macrophage suspension. Luminol, a 'O₂ scavenger [8], inhibited NADH oxidation in the XOD system. Diclofenac sodium (Dc), a non-steroidal anti-inflammatory drug and a potent inhibitor of 'O₂ production in the macrophage system (not in the XOD system), demon-

Table 1. Stimulation of 'O₂ production effected by Na₂PtCl₆

O ₂ generating source	Buffer	Time (min)	Control net NADH oxidation (µmole)	Stimulation ratio (Na ₂ PtCl ₆ conc. M)		
				2.5×10^{-4}	5×10^{-4}	1×10^{-3}
XOD (U/ml)						
0.05	V	5	0.020	7.2	10.7	
0.10	V	5	0.058	1.1	2.1	2.4
0.20	V	5	0.092	2.0	2.4	
0.05	P(b)	10	0.078	1.0	1.9	3.0
Macrophages						
$(\times 10^6/\text{ml})$	5 ()	4.0	0.044	4.0		0.0
2.6	P(a)	10	0.011	4.0	6.6	9.3
2.6	P(a)	20	0.045	3.0	3.2	3.8
2.6	P(b)	5	0.026	3.7	4.8	7.9
2.2	P(b)	5	0.018	3.2	6.6	
2.6	P (b)	10	0.041	3.6	5.1	
2.8	P(b)	10	0.042	2.8	5.1	
2.2	P(b)	10	0.034	2.4	5.4	-

The stimulatory ratio was calculated as described in the text. Control net NADH oxidation was set as 1.0. V, 8 mM Veronal-acetate-HCl buffer pH 6.5; P(a), 25 mM NaH₂-Na₂HPO₄ buffer pH 6.5; P(b), 125 mM NaH₂-Na₂HPO₄ buffer pH 6.5.

476 Y. Ōyanagui

strated dose-dependent inhibition of the NADH oxidation which was stimulated by $5 \times 10^{-4} \, \mathrm{M}$ Na₂PtCl₆. Pt⁺⁴ can perhaps be applied for screening anti-inflammatory drugs with economy of macrophages [1].

DISCUSSION

To my knowledge only a small number of agents have been reported to stimulate 'O₂ production. Curnutte et al. [9] showed that fluoride (20 mM) increased 'O₂ production about 5 times at 10 min and 2 times at 20 min when measured by the absorbance of cytochrome c reduced by human granulocytes. This stimulation was verified in our study using guinea-pig macrophages and a LDH + NADH assay system, but was not as marked as in their study, and disappeared after 20 min Cytochalasin B (5 µg/ml), contrary to the results of Curnutte's study, was shown to inhibit O₂ production by macrophages [1]. This discrepancy may be due to differences in the assay method. Cytochrome c might have the wrong configuration to allow this enzyme to trap quickly 'O₂ generated on the cell membrane [10, 11]. Cytochalasin E was stimulatory when examined by the nitroblue tetrazolium assay and guinea-pig leucocytes [10]. Paraquat (a herbicide) damaged human lungs [12, 13] and was reported to enhance 'O₂ production in vitro [14]. Streptonigrin (an antibiotic, 1.0 µg/ml) was nonbactericidal but when combined with a small amount of O_2^- , regenerated enough O_2^- to become bactericidal [15].

 Na_2PtCl_6 seems to fall in the category of these kinds of stimulators of O_2^- production or to be an efficient O_2^- stabilizer. This platinum salt is easily available from commercial sources, and is hopefully applicable for detecting traces of O_2^- generated from various materials. Furthermore, the platinum salt makes possible the use of smaller amounts of macrophages for screening anti-inflammatory agents [1].

The inflammation-inducing capacity of Na₂PtCl₆, was also studied (unpublished result). A saline solution of Na₂PtCl₆ (4 µmoles/guinea-pig paw) caused acute lethal effect, but when injected as 10% water in 90% vegetable oil suspension, it caused chronic paw swelling and profound damage of joint connective tissues and of bones from 3 days to more than 2 weeks. Equimolar amounts of copper acetate, ferric chloride, lead chloride and cadmium chloride caused no such swelling or damage.

(NH₃)₂PtCl₄, (NH₃)₂PtCl₆ and their derivatives, which are known as anti-tumor agents [16], were not

available so their effects on O_2^- production could not be studied. These complex salts are reported to destabilize the DNA-helix in vitro [17]. Other antitumor agents, Bleomycin [18] and Mitomycin C [19] are also supposed to attack tumor cells by the formation of O_2^- . There is no report that Na_2PtCl_6 itself has an anti-tumor effect, but it is worth considering the relationship between the O_2^- production and the anti-tumor effect of platinum compounds. $(NH_3)_2PtCl_4$ is reported to accumulate in plasma and in the organs [20].

Platinum compounds also depress the skin allograft reaction in mice [21] and inhibit production of antibody to sheep erythrocytes in mice spleen cells [22]. The stimulatory effect of Pt⁺⁴ ions on O₂ production may explain the effect observed in *in vivo* studies.

REFERENCES

- 1. Y. Oyanagui, Biochem. Pharmac. 25, 1473 (1976).
- R. L. Baehner and D. G. Nathan, New Engl. J. Med. 278, 971 (1968).
- J. T. Curnutte and B. M. Babior, J. clin. Invest. 53, 1662 (1974).
- 4. C. W. Welsch, J. natn Cancer Inst. 47, 1071 (1971).
- 5. Y. Oyanagui, Biochem. Pharmac. 25, 1465 (1976).
- A. Khan, J. M. Hill, W. Grater, E. Loeb, A. MacLellan and N. Hill, Cancer Res. 35, 2766 (1975).
- P. C. Chan and H. J. Bielski, J. biol. Chem. 249, 1317 (1974).
- 8. L. Greenlee, I. Fridovich and P. Handler, *Biochemistry* 1, 779 (1962).
- 9. J. T. Curnutte and B. M. Babior, *Blood* **45**, 851 (1975).
- A. Nakagawara and S. Minakami, Biochem. biophys. Res. Commun. 64, 760 (1975).
- 11. D. Roos, W. T. Homan-Müller and R. S. Weening, Biochem. biophys. Res. Commun. 68, 43 (1976).
- 12. A. P. Autor, Life Sci. 14, 1309 (1974).
- D. S. Davies and D. L. Davies, Fedn. Proc. 33, 228 (1974).
- J. S. Bus and J. E. Gibson, *Biochem. biophys. Res. Commun.* 58, 749 (1974).
- E. M. Gregory and I. Fridovich, J. Bact. 114, 1193 (1973).
- B. Rosenberg and L. VanCamp, Cancer Res. 30, 1799 (1970).
- 17. H. C. Harder, Chem. Biol. Interactions 10, 27 (1975).
- R. Ishida and T. Takahashi, Biochem. biophys. Res. Commun. 66, 1432 (1975).
- 19. K. Handa and S. Sato, Gann 66, 43 (1975).
- C. L. Litterst, J. E. Gram, R. L. Dedrick, A. F. Leroy and A. M. Guarino, *Cancer Res.* 36, 2340 (1976).
- 21. G. Brambilla and A. Maura, *Cancer Chemother, Rep.* (Part 1), **58**, 633 (1974).
- 22. M. C. Berenbaum, Br. J. Cancer 25, 208 (1971).